Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo

نویسندگان

  • Alain Durmus
  • Umut Simsekli
  • Eric Moulines
  • Roland Badeau
  • Gaël Richard
چکیده

Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) algorithms have become increasingly popular for Bayesian inference in large-scale applications. Even though these methods have proved useful in several scenarios, their performance is often limited by their bias. In this study, we propose a novel sampling algorithm that aims to reduce the bias of SG-MCMC while keeping the variance at a reasonable level. Our approach is based on a numerical sequence acceleration method, namely the Richardson-Romberg extrapolation, which simply boils down to running almost the same SG-MCMC algorithm twice in parallel with different step sizes. We illustrate our framework on the popular Stochastic Gradient Langevin Dynamics (SGLD) algorithm and propose a novel SG-MCMC algorithm referred to as Stochastic Gradient Richardson-Romberg Langevin Dynamics (SGRRLD). We provide formal theoretical analysis and show that SGRRLD is asymptotically consistent, satisfies a central limit theorem, and its non-asymptotic bias and the mean squared-error can be bounded. Our results show that SGRRLD attains higher rates of convergence than SGLD in both finite-time and asymptotically, and it achieves the theoretical accuracy of the methods that are based on higher-order integrators. We support our findings using both synthetic and real data experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asynchronous Stochastic Gradient MCMC with Elastic Coupling

We consider parallel asynchronous Markov Chain Monte Carlo (MCMC) sampling for problems where we can leverage (stochastic) gradients to define continuous dynamics which explore the target distribution. We outline a solution strategy for this setting based on stochastic gradient Hamiltonian Monte Carlo sampling (SGHMC) which we alter to include an elastic coupling term that ties together multipl...

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

Relativistic Monte Carlo

Hamiltonian Monte Carlo (HMC) is a popular Markov chain Monte Carlo (MCMC) algorithm that generates proposals for a Metropolis-Hastings algorithm by simulating the dynamics of a Hamiltonian system. However, HMC is sensitive to large time discretizations and performs poorly if there is a mismatch between the spatial geometry of the target distribution and the scales of the momentum distribution....

متن کامل

A Complete Recipe for Stochastic Gradient MCMC

Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dynamics to define a transition kernel that efficiently explores a target distribution. In tandem, a focus has been on devising scalable variants that subsample the data and use stochastic gradients in place of full-data gradients in the dynamic simulations. However, such stochastic gradient MCMC samplers have lagged behin...

متن کامل

Stochastic Gradient Monomial Gamma Sampler

Recent advances in stochastic gradient techniques have made it possible to estimate posterior distributions from large datasets via Markov Chain Monte Carlo (MCMC). However, when the target posterior is multimodal, mixing performance is often poor. This results in inadequate exploration of the posterior distribution. A framework is proposed to improve the sampling efficiency of stochastic gradi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016